# **SAGE collegepublishing**

**Teaching** isn't easy. | **Learning** never ends. We are here for you.

Learn more about SAGE teaching and learning solutions for your course at sagepub.com/collegepublishing.

#### **About SAGE**

Founded in 1965, SAGE is a leading independent academic and professional publisher of innovative, high-quality content. Known for our commitment to quality and innovation, SAGE has helped inform and educate a global community of scholars, practitioners, researchers, and students across a broad range of subject areas.

FRIEDENBERG / SILVERMAN / SPIVEY

# **COGNITIVE SCIENCE** FOURTH EDITION

SAGE

# JAY FRIEDENBERG / GORDON SILVERMAN / MICHAEL JAMES SPIVEY

# COGNITIVE SCENCE AN INTRODUCTION T THE STUDY OF MIND FOURTH EDITION

Cover image: iStock.com/Just\_Super









# **Cognitive Science**

**Fourth Edition** 

Sara Miller McCune founded SAGE Publishing in 1965 to support the dissemination of usable knowledge and educate a global community. SAGE publishes more than 1000 journals and over 600 new books each year, spanning a wide range of subject areas. Our growing selection of library products includes archives, data, case studies and video. SAGE remains majority owned by our founder and after her lifetime will become owned by a charitable trust that secures the company's continued independence.

Los Angeles | London | New Delhi | Singapore | Washington DC | Melbourne

# **Cognitive Science**

#### An Introduction to the Study of Mind

**Fourth Edition** 

Jay Friedenberg Manhattan College

Gordon Silverman Manhattan College

Michael J. Spivey University of California-Merced



Los Angeles | London | New Delhi Singapore | Washington DC | Melbourne



#### FOR INFORMATION:

SAGE Publications, Inc. 2455 Teller Road Thousand Oaks, California 91320 E-mail: order@sagepub.com

SAGE Publications Ltd. 1 Oliver's Yard 55 City Road London EC1Y 1SP United Kingdom

SAGE Publications India Pvt. Ltd. B 1/I 1 Mohan Cooperative Industrial Area Mathura Road, New Delhi 110 044 India

SAGE Publications Asia-Pacific Pte. Ltd. 18 Cross Street #10-10/11/12 China Square Central Singapore 048423

Sponsoring Editor: Jessica Miller Project Associate: Ivey Mellem Production Editor: Astha Jaiswal Copy Editor: Gillian Dickens Typesetter: C&M Digitals (P) Ltd. Cover Designer: Candice Harman Marketing Manager: Victoria Velasquez Copyright © 2022 by SAGE Publications, Inc.

All rights reserved. Except as permitted by U.S. copyright law, no part of this work may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without permission in writing from the publisher.

All third-party trademarks referenced or depicted herein are included solely for the purpose of illustration and are the property of their respective owners. Reference to these trademarks in no way indicates any relationship with, or endorsement by, the trademark owner.

Printed in the United States of America

ISBN 9781544380155

This book is printed on acid-free paper.

21 22 23 24 25 10 9 8 7 6 5 4 3 2 1

### **BRIEF TABLE OF CONTENTS**

| Preface                                                                                  | xix   |
|------------------------------------------------------------------------------------------|-------|
| About the Authors                                                                        | xxvii |
|                                                                                          |       |
| CHAPTER 1 • Introduction: Exploring Mental Space                                         | 1     |
| CHAPTER 2 • The Philosophical Approach:<br>Enduring Questions                            | 25    |
|                                                                                          |       |
| CHAPTER 3 • The Psychological Approach:<br>A Profusion of Theories                       | 57    |
| CHAPTER 4 • The Cognitive Approach I:                                                    |       |
| Vision, Pattern Recognition, and Attention                                               | 83    |
| CHAPTER 5 • The Cognitive Approach II:<br>Memory, Imagery, Concepts, and Problem Solving | 111   |
| CHAPTER 6 • The Neuroscience Approach:                                                   |       |
| Mind as Brain                                                                            | 147   |
| CHAPTER 7 • The Network Approach: Mind as a Web                                          | 189   |
| CHAPTER 8 • The Evolutionary Approach:                                                   |       |
| Change Over Time                                                                         | 229   |
| CHAPTER 9 • The Linguistic Approach: Language                                            |       |
| and Cognitive Science                                                                    | 263   |
| CHAPTER 10 • The Emotional Approach: Mind as Emotion                                     | 297   |
| CHAPTER 11 • The Social Approach: Mind as Society                                        | 319   |
| CHAPTER 12 • The Artificial Intelligence Approach I:                                     |       |
| The Computer as a Cognitive Agent                                                        | 355   |

| <b>CHAPTER 13 • The Artificial Intelligence Approach II:</b><br>Embedded Intelligence and Robotics | 401 |
|----------------------------------------------------------------------------------------------------|-----|
| <b>CHAPTER 14 • The Embodied Ecological Approach:</b><br>A Dynamic Future for Cognitive Science?   | 437 |
| Glossary                                                                                           | 475 |
| References                                                                                         | 495 |
| Index                                                                                              | 529 |

# DETAILED TABLE OF CONTENTS

| Preface                                                 | xix   |  |
|---------------------------------------------------------|-------|--|
| About the Authors                                       | xxvii |  |
|                                                         |       |  |
| <b>CHAPTER 1</b> • Introduction: Exploring Mental Space | 1     |  |
| A Brave New World                                       | 1     |  |
| What Is Cognitive Science?                              | 2     |  |
| Representation                                          | 3     |  |
| Types of Representation                                 | 5     |  |
| Computation                                             | 7     |  |
| The Tri-Level Hypothesis                                | 8     |  |
| Differing Views of Representation and Computation       | 10    |  |
| The Interdisciplinary Perspective                       | 12    |  |
| The Philosophical Approach                              | 14    |  |
| INTERDISCIPLINARY CROSSROADS: Science and Philosophy    | 14    |  |
| The Psychological Approach                              | 15    |  |
| The Cognitive Approach                                  | 16    |  |
| The Neuroscience Approach                               | 17    |  |
| The Network Approach                                    | 18    |  |
| The Evolutionary Approach                               | 18    |  |
| The Linguistic Approach                                 | 19    |  |
| The Emotion Approach                                    | 19    |  |
| The Social Approach                                     | 20    |  |
| The Artificial Intelligence Approach                    | 20    |  |
| The Robotics Approach                                   | 21    |  |
| The Embodied Ecological Approach                        | 21    |  |
| Integrating Approaches                                  | 22    |  |
| Summing Up: A Review of Chapter 1                       | 22    |  |
| CHAPTER 2 • The Philosophical Approach:                 |       |  |
| Enduring Questions                                      | 25    |  |
| What Is Philosophy?                                     | 25    |  |
| Chapter Overview                                        | 25    |  |
| The Mind–Body Problem: What Is Mind?                    | 26    |  |

| Monism                                                             | 28 |
|--------------------------------------------------------------------|----|
| Evaluating the Monist Perspective                                  | 29 |
| Dualism                                                            | 30 |
| Substance Dualism                                                  | 31 |
| Property Dualism                                                   | 32 |
| Evaluating the Dualist Perspective                                 | 32 |
| Functionalism: Are Minds Limited to Brains?                        | 34 |
| Evaluating the Functionalist Perspective                           | 36 |
| The Knowledge Acquisition Problem: How Do<br>We Acquire Knowledge? | 37 |
| Evaluating the Knowledge Acquisition Debate                        | 39 |
| The Mystery of Consciousness: What Is Consciousness                |    |
| and How Does It Operate?                                           | 41 |
| The What-It's-Like Argument                                        | 42 |
| Mind as an Emergent Property                                       | 44 |
| Evaluating the Emergent View of Mind                               | 46 |
| Consciousness: One or Many?                                        | 46 |
| Consciousness and Neuroscience                                     | 49 |
| INTERDISCIPLINARY CROSSROADS: Philosophy, Neuroscience,            |    |
| and Binocular Rivalry                                              | 51 |
| Consciousness and Artificial Intelligence                          | 53 |
| Overall Evaluation of the Philosophical Approach                   | 55 |
| Summing Up: A Review of Chapter 2                                  | 56 |
| CHAPTER 3 • The Psychological Approach:                            |    |
| A Profusion of Theories                                            | 57 |
| What Is Psychology?                                                | 57 |
| Psychology and the Scientific Method                               | 58 |
| Intelligence Tests                                                 | 61 |
| Mental Atoms, Mental Molecules, and a Periodic Table of the Mind:  |    |
| The Voluntarist Movement                                           | 62 |
| Evaluating the Voluntarist Approach                                | 64 |
| Structuralism: What the Mind Is                                    | 65 |
| Evaluating the Structuralist Approach                              | 66 |
| Functionalism: What the Mind Does                                  | 66 |
| Evaluating the Functionalist Approach                              | 68 |
| The Whole Is Greater Than the Sum of Its Parts:                    |    |
| Mental Physics and the Gestalt Movement                            | 69 |
| INTERDISCIPLINARY CROSSROADS: Gestalt Phenomenology,               |    |
| Experimental Psychology, and Perceptual Grouping                   | 71 |
| Evaluating the Gestalt Approach                                    | 74 |
| Mini Minds: Mechanism and Psychoanalytic Psychology                | 75 |
| Evaluating the Psychoanalytic Approach                             | 77 |

| Mind as a Black Box: The Behaviorist Approach            | 78  |
|----------------------------------------------------------|-----|
| Evaluating the Behaviorist Approach                      | 80  |
| Overall Evaluation of the Psychological Approach         | 81  |
| Summing Up: A Review of Chapter 3                        | 81  |
|                                                          |     |
| CHAPTER 4 • The Cognitive Approach I:                    | 00  |
| Vision, Pattern Recognition, and Attention               | 83  |
| Some History First: The Rise of Cognitive Psychology     | 83  |
| The Cognitive Approach: Mind as an Information Processor | 84  |
| Modularity of Mind                                       | 85  |
| Evaluating the Modular Approach                          | 85  |
| Theories of Vision and Pattern Recognition: How Do       |     |
| We Recognize Objects?                                    | 86  |
| Template Matching Theory                                 | 87  |
| Evaluating Template Matching Theory                      | 87  |
| Feature Detection Theory                                 | 88  |
| Evaluating Feature Detection Theory                      | 90  |
| Recognition by Components Theory                         | 91  |
| Evaluating Recognition by Components Theory              | 93  |
| INTERDISCIPLINARY CROSSROADS: Computational Vision       |     |
| and Pattern Recognition                                  | 94  |
| Evaluating Marr's Computational Approach to Vision       | 96  |
| Feature Integration Theory                               | 96  |
| Evaluating Feature Integration Theory                    | 100 |
| Theories of Attention: How Do We Pay Attention?          | 100 |
| Broadbent's Filter Model                                 | 101 |
| Evaluating the Filter Model                              | 103 |
| Treisman's Attenuation Model                             | 103 |
| The Deutsch–Norman Memory Selection Model                | 103 |
| The Multimode Model of Attention                         | 104 |
| Kahneman's Capacity Model of Attention                   | 105 |
| Evaluating the Capacity Model of Attention               | 107 |
| Evaluating the Model-Building Approach                   | 107 |
| Summing Up: A Review of Chapter 4                        | 108 |
| CHAPTER 5 • The Cognitive Approach II:                   |     |
| Memory, Imagery, Concepts, and Problem Solving           | 111 |
|                                                          |     |
| Types of Memory: How Do We Remember?                     | 111 |
| Sensory Memory                                           | 112 |
| Working Memory                                           | 114 |
| Scanning Items in Working Memory                         | 117 |
| Long-Term Memory                                         | 118 |
| Memory Models                                            | 121 |

| The Modal Model                                          | 121 |
|----------------------------------------------------------|-----|
| Evaluating the Modal Model                               | 122 |
| The Working Memory Model                                 | 123 |
| Evaluating the Working Memory Model                      | 125 |
| Visual Imagery: How Do We Imagine?                       | 125 |
| The Kosslyn and Schwartz Theory of Visual Imagery        | 126 |
| Image Structures                                         | 126 |
| Image Processes                                          | 127 |
| Evaluating the Kosslyn and Schwartz Theory               | 129 |
| Concepts: How Do We Represent Our Knowledge of Concepts? | 132 |
| Problem Solving: How Do We Solve Problems?               | 136 |
| The General Problem Solver Model                         | 139 |
| Evaluating the General Problem Solver Model              | 140 |
| INTERDISCIPLINARY CROSSROADS: Artificial Intelligence,   |     |
| Problem Solving, and the SOAR Model                      | 141 |
| Evaluating the SOAR Model                                | 143 |
| Overall Evaluation of the Cognitive Approach             | 144 |
| Summing Up: A Review of Chapter 5                        | 144 |
| CHAPTER 6 • The Neuroscience Approach:                   |     |
| Mind as Brain                                            | 147 |
|                                                          | 147 |
| The Neuroscience Perspective                             | 147 |
| Methodology in Neuroscience                              | 148 |
| Techniques for the Study of Brain Damage                 | 148 |
| Evaluating Techniques for the Study of Brain Damage      | 148 |
| Brain Recording Methods                                  | 149 |
| Positron Emission Tomography                             | 150 |
| Functional Magnetic Resonance Imaging                    | 150 |
| Magnetoencephalography                                   | 151 |
| Knife-Edge Scanning Microscope                           | 152 |
| Brain Stimulation Techniques                             | 152 |
| Electrode Stimulation                                    | 152 |
| Transcranial Magnetic Stimulation                        | 152 |
| Optogenetics                                             | 153 |
| The Small Picture: Neuron Anatomy and Physiology         | 153 |
| The Big Picture: Brain Anatomy                           | 156 |
| Directions in the Nervous System                         | 157 |
| The Cortex                                               | 157 |
| The Split Brain                                          | 159 |
| The Neuroscience of Visual Object Recognition            | 160 |
| Visual Agnosias                                          | 161 |
| Apperceptive Agnosia                                     | 162 |
| Associative Agnosia                                      | 163 |
| Face Perception                                          | 165 |

| Neural Models of Attention         1           A Component Process Model         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 167                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Neural Models of Attention         1           A Component Process Model         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |
| A Component Process Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 168                                                                                                                                                                                 |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 170                                                                                                                                                                                 |
| Distributed Natural Medale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 170                                                                                                                                                                                 |
| Distributed Network Models                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 172                                                                                                                                                                                 |
| Disorders of Attention 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 173                                                                                                                                                                                 |
| Hemispatial Neglect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 173                                                                                                                                                                                 |
| Attention-Deficit Hyperactivity Disorder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 174                                                                                                                                                                                 |
| The Neuroscience of Memory 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 175                                                                                                                                                                                 |
| Learning and Memory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 175                                                                                                                                                                                 |
| The Hippocampal System 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 176                                                                                                                                                                                 |
| Neural Substrates of Working Memory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 178                                                                                                                                                                                 |
| Evaluating the Neuroscience of Working Memory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 180                                                                                                                                                                                 |
| Neural Substrates of Long-Term Memories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 180                                                                                                                                                                                 |
| The Neuroscience of Executive Function and Problem Solving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 181                                                                                                                                                                                 |
| Theories of Executive Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 183                                                                                                                                                                                 |
| Overall Evaluation of the Neuroscience Approach 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 186                                                                                                                                                                                 |
| Summing Up: A Review of Chapter 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 186                                                                                                                                                                                 |
| HAPTER 7 • The Network Approach: Mind as a Web                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 189                                                                                                                                                                                 |
| The Network Perspective 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 189                                                                                                                                                                                 |
| Artificial Neural Networks 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 190                                                                                                                                                                                 |
| Characteristics of Artificial Neural Networks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 193                                                                                                                                                                                 |
| Early Conceptions of Neural Networks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 193<br>194                                                                                                                                                                          |
| F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                     |
| Backpropagation 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 194                                                                                                                                                                                 |
| Backpropagation         1           NETtalk: An Example of a Backpropagation         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 194                                                                                                                                                                                 |
| Backpropagation1NETtalk: An Example of a BackpropagationArtificial Neural Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 194<br>195                                                                                                                                                                          |
| Backpropagation       1         NETtalk: An Example of a Backpropagation       1         Artificial Neural Network       1         The Elman Net: An Example of a Simple Recurrent Network       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 194<br>195<br>197                                                                                                                                                                   |
| Backpropagation1NETtalk: An Example of a Backpropagation1Artificial Neural Network1The Elman Net: An Example of a Simple Recurrent Network1Evaluating the Connectionist Approach2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 194<br>195<br>197<br>199                                                                                                                                                            |
| Backpropagation       1         NETtalk: An Example of a Backpropagation       1         Artificial Neural Network       1         The Elman Net: An Example of a Simple Recurrent Network       1         Evaluating the Connectionist Approach       2         Advantages       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 194<br>195<br>197<br>199<br>200                                                                                                                                                     |
| Backpropagation1NETtalk: An Example of a Backpropagation1Artificial Neural Network1The Elman Net: An Example of a Simple Recurrent Network1Evaluating the Connectionist Approach2Advantages2Problems and Disadvantages2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 194<br>195<br>197<br>199<br>200<br>200<br>201                                                                                                                                       |
| Backpropagation       1         NETtalk: An Example of a Backpropagation       1         Artificial Neural Network       1         The Elman Net: An Example of a Simple Recurrent Network       1         Evaluating the Connectionist Approach       2         Advantages       2         Problems and Disadvantages       2         Semantic Networks: Meaning in the Web       2                                                                                                                                                                                                                                                                                                                                                                                                        | 194<br>195<br>197<br>199<br>200<br>200                                                                                                                                              |
| Backpropagation       1         NETtalk: An Example of a Backpropagation       1         Artificial Neural Network       1         The Elman Net: An Example of a Simple Recurrent Network       1         Evaluating the Connectionist Approach       2         Advantages       2         Problems and Disadvantages       2         Semantic Networks: Meaning in the Web       2         Characteristics of Semantic Networks       2                                                                                                                                                                                                                                                                                                                                                   | 194<br>195<br>197<br>199<br>200<br>200<br>201<br>203                                                                                                                                |
| Backpropagation1NETtalk: An Example of a Backpropagation1Artificial Neural Network1The Elman Net: An Example of a Simple Recurrent Network1Evaluating the Connectionist Approach2Advantages2Problems and Disadvantages2Semantic Networks: Meaning in the Web2Characteristics of Semantic Networks2A Hierarchical Semantic Network2                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 194<br>195<br>197<br>199<br>200<br>200<br>201<br>203<br>203                                                                                                                         |
| Backpropagation       1         NETtalk: An Example of a Backpropagation       1         Artificial Neural Network       1         The Elman Net: An Example of a Simple Recurrent Network       1         Evaluating the Connectionist Approach       2         Advantages       2         Problems and Disadvantages       2         Semantic Networks: Meaning in the Web       2         Characteristics of Semantic Networks       2         A Hierarchical Semantic Network Model       2                                                                                                                                                                                                                                                                                             | <ul> <li>194</li> <li>195</li> <li>197</li> <li>199</li> <li>200</li> <li>200</li> <li>201</li> <li>203</li> <li>205</li> </ul>                                                     |
| Backpropagation1NETtalk: An Example of a Backpropagation1Artificial Neural Network1The Elman Net: An Example of a Simple Recurrent Network1Evaluating the Connectionist Approach2Advantages2Problems and Disadvantages2Semantic Networks: Meaning in the Web2Characteristics of Semantic Networks2A Hierarchical Semantic Network2Evaluating the Hierarchical Semantic Network Model2Evaluating Semantic Networks2                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>194</li> <li>195</li> <li>197</li> <li>199</li> <li>200</li> <li>200</li> <li>201</li> <li>203</li> <li>203</li> <li>205</li> <li>207</li> <li>208</li> </ul>              |
| Backpropagation       1         NETtalk: An Example of a Backpropagation       1         Artificial Neural Network       1         The Elman Net: An Example of a Simple Recurrent Network       1         Evaluating the Connectionist Approach       2         Advantages       2         Problems and Disadvantages       2         Semantic Networks: Meaning in the Web       2         Characteristics of Semantic Networks       2         A Hierarchical Semantic Network       2         Evaluating the Hierarchical Semantic Network Model       3         Evaluating Semantic Networks       3         Network Science       2                                                                                                                                                   | <ul> <li>194</li> <li>195</li> <li>197</li> <li>199</li> <li>200</li> <li>200</li> <li>201</li> <li>203</li> <li>203</li> <li>205</li> <li>207</li> <li>208</li> <li>211</li> </ul> |
| Backpropagation       1         NETtalk: An Example of a Backpropagation       1         Artificial Neural Network       1         The Elman Net: An Example of a Simple Recurrent Network       1         Evaluating the Connectionist Approach       2         Advantages       2         Problems and Disadvantages       2         Semantic Networks: Meaning in the Web       2         Characteristics of Semantic Networks       2         A Hierarchical Semantic Network       2         Evaluating the Hierarchical Semantic Network Model       2         Evaluating Semantic Networks       2         Network Science       2         Centrality       2                                                                                                                        | 194           195           197           199           200           201           203           205           207           208           211           212                       |
| Backpropagation1NETtalk: An Example of a Backpropagation1Artificial Neural Network1The Elman Net: An Example of a Simple Recurrent Network1Evaluating the Connectionist Approach2Advantages2Problems and Disadvantages2Semantic Networks: Meaning in the Web2Characteristics of Semantic Networks2A Hierarchical Semantic Network2Evaluating the Hierarchical Semantic Network Model2Evaluating Semantic Networks2Network Science2Centrality2Hierarchical Networks and the Brain2                                                                                                                                                                                                                                                                                                           | 194           195           197           199           200           201           203           205           207           208           211           212           212         |
| Backpropagation       1         NETtalk: An Example of a Backpropagation       1         Artificial Neural Network       1         The Elman Net: An Example of a Simple Recurrent Network       1         Evaluating the Connectionist Approach       2         Advantages       2         Problems and Disadvantages       2         Semantic Networks: Meaning in the Web       2         Characteristics of Semantic Networks       2         A Hierarchical Semantic Network       2         Evaluating the Hierarchical Semantic Network Model       2         Evaluating Semantic Networks       2         Network Science       2         Centrality       2         Hierarchical Networks and the Brain       2         Small-World Networks: It's a Small World After All       2 | 194           195           197           199           200           201           203           205           207           208           211           212                       |

| Neuroscience and Networks                                | 217 |
|----------------------------------------------------------|-----|
| Small-World Networks and Synchrony                       | 219 |
| Percolation                                              | 220 |
| Percolation and Psychology                               | 220 |
| The Future of Network Science                            | 222 |
| Overall Evaluation of the Network Approach               | 222 |
| INTERDISCIPLINARY CROSSROADS: Emotions and Networks      | 223 |
| Summing Up: A Review of Chapter 7                        | 226 |
| CHAPTER 8 • The Evolutionary Approach:                   |     |
| Change Over Time                                         | 229 |
| The Evolutionary View                                    | 229 |
| A Little Background: Natural Selection and Genetics      | 230 |
| Comparative Cognition                                    | 232 |
| Cognitive Adaptation in Animals                          | 233 |
| INTERDISCIPLINARY CROSSROADS: Evolutionary               |     |
| Processes and Artificial Life                            | 235 |
| Comparative Neuroscience                                 | 237 |
| Evaluating the Comparative Approach                      | 240 |
| Evolutionary Psychology                                  | 241 |
| Evolved Psychological Mechanisms                         | 242 |
| Evolution and Cognitive Processes                        | 244 |
| Categorization                                           | 244 |
| Memory                                                   | 245 |
| Logical Reasoning                                        | 247 |
| Judgment Under Uncertainty                               | 249 |
| Language                                                 | 252 |
| Behavioral Economics: How We Think About Profit and Loss | 253 |
| Sex Differences in Cognition                             | 255 |
| Evaluating Evolutionary Psychology                       | 258 |
| Overall Evaluation of the Evolutionary Approach          | 261 |
| Summing Up: A Review of Chapter 8                        | 261 |
| CHAPTER 9 • The Linguistic Approach:                     |     |
| Language and Cognitive Science                           | 263 |
| The Linguistic Approach: The Importance of Language      | 263 |
| The Nature of Language                                   | 264 |
| Language Processing                                      | 265 |
| Phonology                                                | 265 |
| Morphology                                               | 268 |
| Word Recognition                                         | 269 |
| Syntax                                                   | 270 |
| Semantics                                                | 274 |
| Pragmatics                                               | 276 |
|                                                          |     |

| Language Acquisition                                                 | 277 |
|----------------------------------------------------------------------|-----|
| Domain-General and Domain-Specific Mechanisms                        |     |
| in Language Acquisition                                              | 279 |
| Evaluating Language Acquisition                                      | 281 |
| Language Deprivation                                                 | 282 |
| Evaluating Language Deprivation                                      | 284 |
| INTERDISCIPLINARY CROSSROADS: Language, Philosophy,                  |     |
| and the Linguistic Relativity Hypothesis                             | 285 |
| Evaluating the Linguistic Relativity Hypothesis                      | 286 |
| Language Use in Nonhuman Animals                                     | 286 |
| Evaluating Language Use in Nonhuman Animals                          | 288 |
| Neuroscience and Linguistics: The Wernicke–Geschwind Model           | 289 |
| Evaluating the Wernicke–Geschwind Model                              | 292 |
| Artificial Intelligence and Linguistics: Natural Language Processing | 293 |
| Computer Language Programs and IBM's Watson                          | 293 |
| Evaluation of Natural Language Processing                            | 294 |
| Overall Evaluation of the Linguistic Approach                        | 294 |
| Summing Up: A Review of Chapter 9                                    | 295 |
| CHAPTER 10 • The Emotional Approach: Mind as Emotion                 | 297 |
| Emotion and Cognitive Science                                        | 297 |
| What Is Emotion?                                                     | 297 |
| Theories of Emotion                                                  | 298 |
| Basic Emotions                                                       | 299 |
| Emotions, Evolution, and Psychological Disorders                     | 300 |
| Disgust                                                              | 302 |
| Fear                                                                 | 302 |
| Anger                                                                | 302 |
| Sadness                                                              | 303 |
| Happiness                                                            | 303 |
| Emotions and Neuroscience                                            | 304 |
| The Chemical and Electrical Basis of Emotional Computation           | 305 |
| Hot and Cold: Emotion–Cognition Interactions                         | 306 |
| Emotion and Perception/Attention                                     | 307 |
| Emotion and Memory                                                   | 308 |
| Emotion, Mood, and Memory                                            | 309 |
| Emotion and Decision Making                                          | 310 |
| Emotions and Reasoning by Analogy                                    | 311 |
| Emotions and Artificial Intelligence: Affective Computing            | 312 |
| INTERDISCIPLINARY CROSSROADS: Emotion, Robotics,                     |     |
| and the Kismet Project                                               | 314 |
| Overall Evaluation of the Emotional Approach                         | 317 |
| Summing Up: A Review of Chapter 10                                   | 317 |
|                                                                      |     |

| CHAPTER 11 • The Social Approach: Mind as Society        | 319 |
|----------------------------------------------------------|-----|
| Social Cognition                                         | 319 |
| Social Cognitive Neuroscience                            | 321 |
| Topics in Social Cognitive Neuroscience                  | 322 |
| Evolution                                                | 322 |
| Attention                                                | 323 |
| Mirror Neurons                                           | 325 |
| Social Cognition as the Brain's Default State            | 327 |
| Is Social Cognitive Neuroscience Special?                | 328 |
| Advantages of the Social Cognitive Neuroscience Approach | 329 |
| Theory of Mind                                           | 329 |
| ToM and Neuroscience                                     | 330 |
| Autism                                                   | 332 |
| Autism and ToM                                           | 333 |
| Other Social Cognitive Disorders                         | 334 |
| Attitudes                                                | 334 |
| Cognitive Dissonance                                     | 336 |
| Attitudes and Cognitive Processes                        | 337 |
| Perception                                               | 337 |
| Attention                                                | 338 |
| Interpretation                                           | 338 |
| Learning                                                 | 338 |
| Memory                                                   | 338 |
| Attitudes and Neuroscience                               | 339 |
| Impressions                                              | 340 |
| The Dual-Process Model of Impression Formation           | 340 |
| Attribution                                              | 341 |
| Attribution Biases                                       | 342 |
| Attribution and Cognitive Processes                      | 342 |
| Attribution and Neuroscience                             | 343 |
| INTERDISCIPLINARY CROSSROADS: Game Theory                |     |
| and the Prisoner's Dilemma                               | 345 |
| Stereotypes                                              | 347 |
| Stereotypes and Cognitive Processes                      | 347 |
| Ingroups and Outgroups                                   | 348 |
| Automatic Stereotyping                                   | 348 |
| Stereotyping and Neuroscience                            | 349 |
| Prejudice                                                | 350 |
| The Stereotype Content Model of Prejudice                | 350 |
| Overall Evaluation of the Social Approach                | 351 |
| Summing Up: A Review of Chapter 11                       | 352 |
|                                                          |     |

| CHAPTER 12 • The Artificial Intelligence Approach I:     |     |
|----------------------------------------------------------|-----|
| The Computer as a Cognitive Entity                       | 355 |
| Cognitive Science and Artificial Intelligence            | 355 |
| Defining AI                                              | 358 |
| Practical AI                                             | 360 |
| Introduction                                             | 361 |
| AI Implementation ("Hardware")                           | 363 |
| Information and Intelligent Agents                       | 366 |
| Logic, Classical and Fuzzy                               | 367 |
| Reasoning Modalities                                     | 367 |
| The Legacies of Turing and Zadeh                         | 368 |
| Turing's State Variable Approach                         | 368 |
| Fuzzy Problem Solving                                    | 371 |
| Intelligent Agents That Think, Learn, and Make Decisions | 372 |
| Fundamental Concepts of the IA                           | 373 |
| Basic Models                                             | 375 |
| Machine Learning and the Data Sciences                   | 377 |
| The Trial-and-Error Learning Method                      | 377 |
| A Simple Algorithmic Method (Regression Line Algorithm)  | 378 |
| Data Clustering                                          | 378 |
| Reconsideration of Data Sources                          | 380 |
| Deep Learning (DL)                                       | 382 |
| DL Software                                              | 383 |
| Learning Experiences                                     | 384 |
| Artificial General Intelligence                          | 386 |
| AGI Problems                                             | 388 |
| Reverse Engineering the Brain                            | 389 |
| Methodologies                                            | 390 |
| The "Organic Brain" and Wetware                          | 392 |
| Assessment of AI and AGI                                 | 395 |
| Summing Up: A Review of Chapter 12                       | 400 |

#### **CHAPTER 13** • The Artificial Intelligence Approach II: Embedded Intelligence and Robotics

| nbedded Intelligence and Robotics                           | 401 |
|-------------------------------------------------------------|-----|
| Mechanical Beginnings                                       | 403 |
| Embodied Cognitive Science                                  | 403 |
| The Design of Intelligent Robots as "Biologically Inspired" | 403 |
| The Importance of Biology                                   | 404 |
| Robotic Embodied Intelligence                               | 405 |
| Defining and Describing a Robot                             | 405 |
|                                                             |     |

| The Intelligent Agent Paradigm                          | 407 |
|---------------------------------------------------------|-----|
| Properties of an Autonomous Entity                      | 408 |
| Environments of Intelligent Agents                      | 409 |
| A Simple yet "Sophisticated" Robot                      | 410 |
| Evolutionary Embodiments: The Merger of Human           |     |
| Cognitive Behavior, Biology, and Intelligent Agents     | 411 |
| Challenges to DL and Its Algorithms                     | 412 |
| Emerging Tools                                          | 413 |
| Evolutionary Learning Algorithms and Intelligent Agents | 414 |
| Evolutionary Computation                                | 415 |
| The Evolutionary Mutation Process                       | 416 |
| Robotic EA Examples                                     | 418 |
| Robotic Embodiments                                     | 419 |
| Robotic Realizations                                    | 421 |
| Cooperating Intelligent Agents and Swarming             | 427 |
| Swarming Robotics                                       | 427 |
| Particle Robots: An Emerging Technology                 | 428 |
| Embedded Intelligence as an Emotion Machine             | 430 |
| Machine–Human Interactions                              | 431 |
| Brain Waves                                             | 432 |
| The Plasticity of the Human Brain                       | 433 |
| Machines Can Teach Humans                               | 433 |
| Overall Evaluation of Embedded Intelligence             | 434 |
| Summing Up: A Review of Chapter 13                      | 436 |
| CHAPTER 14 • The Embodied Ecological Approach:          |     |
| A Dynamic Future for Cognitive Science?                 | 437 |
| Embodied and Extended Cognition                         | 437 |
| Perceptual Symbol Systems and Motor Affordances         | 438 |
| Perceptual Simulations                                  | 442 |
| Evaluating Embodied Cognition                           | 445 |
| Dynamical Systems Theory                                | 446 |
| Nonlinearity                                            | 446 |
| Predictability                                          | 447 |
| State Space and Trajectories                            | 448 |
| Attractors                                              | 450 |
| Dynamical Representation                                | 451 |
| INTERDISCIPLINARY CROSSROADS: Multiple Approaches to    |     |
| Levels of Explanation in Cognitive Science              | 452 |
| Dynamical Versus Classical Cognitive Science            | 454 |
| The Continuity of Mind                                  | 454 |
| Modularity Versus Distribularity                        | 455 |
| Component-Dominant Versus Interaction-Dominant Dynamics | 455 |

| Internalism Versus Externalism               | 456 |
|----------------------------------------------|-----|
| Amodal Versus Modal Representations          | 457 |
| Feed-Forward Versus Recurrent Pathways       | 457 |
| Evaluating the Dynamical Perspective         | 458 |
| Ecological and Extended Cognition            | 459 |
| Ecological Perception                        | 459 |
| Sensorimotor Interaction                     | 462 |
| Extended Cognition                           | 464 |
| Evaluating Ecological and Extended Cognition | 466 |
| Integrating Cognitive Science                | 467 |
| Integration Across Disciplines               | 467 |
| Integration Across Levels of Description     | 468 |
| Integration Across Methodologies             | 469 |
| Integration Across Cultural Differences      | 469 |
| The Benefits of Cognitive Science            | 471 |
| The Future                                   | 472 |
| Summing Up: A Review of Chapter 14           | 472 |
| ossary                                       | 475 |

| Glossary   | 475        |
|------------|------------|
| References | 495        |
| Index      | <b>529</b> |

#### PREFACE

O ne of the most challenging mysteries remaining to science is the human mind. The brain, which serves as the core engine of the mind, is the most complex object in the universe. It is made up of billions of cells sending signals back and forth to each other over trillions of connections. How can we make sense of all this? Recent years have seen great strides in our understanding, and this has been due in part to developments in technology. In this book, we provide an up-to-date introduction to the study of the mind, examining it from an interdisciplinary perspective. We attempt to understand the mind from the perspective of different fields. Among these are philosophy, psychology, neuroscience, networks, evolution, emotional and social cognition, linguistics, artificial intelligence, robotics, and the new framework of embodied cognition. Beyond this, we make attempts to bridge some of these fields, showing what research at the intersection of these disciplines is like. Each chapter in this text is devoted to a particular disciplinary approach and examines the methodologies, theories, and empirical findings unique to each. Come with us as we explore the next great frontier—our inner world.

#### WHAT'S NEW IN THIS EDITION

For this fourth edition, new content has been added throughout. In Chapter 1 (Introduction), the treatment of formal logic and production systems has been more richly elaborated with concrete examples. Also, a summary of the new Embodied Ecological Approach in Chapter 14 has been included. In Chapter 2 (The Philosophical Approach), a more in-depth exploration of syllogistic reasoning has been added, along with a more detailed discussion of reductionism and how it contrasts with emergence. Also, the discussion of Searle's Chinese room thought experiment has been expanded. In Chapter 3 (The Psychological Approach), a discussion of intelligence tests has been added. In Chapter 4 (The Cognitive Approach I), the description of Anne Treisman's feature integration theory of visual attention was expanded, along with some discussion of Desimone and Duncan's biased competition account. In Chapter 5 (The Cognitive Approach II), a section on conceptual representation has been added. In Chapter 6 (The Neuroscience Approach), the descriptions of various brain-recording methods have been expanded, and discussions of the somatosensory homunculus and of sparse distributed coding were added. In Chapter 7 (The Network Approach), treatments of Elman's simple recurrent network and McClelland and Rogers's connectionist model of category knowledge have been added, along with an expanded discussion of pattern completion. In Chapter 8 (The Evolutionary Approach), a discussion of foraging skills in animals has been included, and the treatment of gender differences in spatial abilities has been expanded. Chapter 9 (The Linguistic Approach) has been substantially rearranged. The role of linguistics (and Chomsky in particular) in the formation of cognitive science is emphasized early on. The treatment of phonology, morphology, syntax, semantics, and language acquisition has been expanded significantly. Also, sections on spoken word recognition and cognitive linguistics have been added. In Chapter 10 (The Emotional Approach), Lisa Feldman Barrett's proposal that emotions are not discrete but can partially overlap one another has been added, as well as a discussion of how color perception can influence affect. In Chapter 11 (The Social Approach), the discussions of the mirror neuron system, autism, the prisoner's dilemma, and stereotype formation have been slightly expanded. Chapter 12 (The Artificial Intelligence Approach I) has been substantially rearranged in its treatment of Alan Turing and Lotfi Zadeh, with a new focus on intelligent agents, Bayesian probability, deep learning, and brain-computer interfaces. In Chapter 13 (The Artificial Intelligence Approach II), the discussion of reactive and deliberative architectures has been expanded and sections have been added on robotic embodied intelligence, evolutionary algorithms, and swarming robotics. Chapter 14 (The Embodied Ecological Approach) was converted from a "future-looking conclusion" chapter into a "state-of-the-art dynamical, embodied, ecological" chapter. The discussions of dynamical systems theory and ecological perception have been significantly expanded, and a section on embodied cognition has been added.

| A Matrix                    |                                  |                                                                                                    |                                                                                                                                                                                                       |                                                                                                                                                                                                                               |                                                                                     |                                                                                                                                                                |                                                                                                                                                              |
|-----------------------------|----------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Na                          | Name/Title                       | Chapter<br>Summary                                                                                 | Primary Topic/<br>Issues                                                                                                                                                                              | Secondary Topic/<br>Issues                                                                                                                                                                                                    | Methodologies                                                                       | Major Figures                                                                                                                                                  | Evaluation                                                                                                                                                   |
| <u> </u>                    | Introduction                     | An introduction<br>to cognitive<br>science and<br>summary overview<br>of different<br>perspectives | <ul> <li>Interdisciplinary<br/>study</li> <li>Representation<br/>and computation</li> <li>Interdisciplinary<br/>perspective</li> <li>Categories</li> <li>of mental</li> <li>representation</li> </ul> | <ul> <li>Concepts</li> <li>Propositions</li> <li>Production rules</li> <li>Declarative<br/>and procedural<br/>knowledge</li> <li>Analogies</li> </ul>                                                                         | No methodologies     discussed                                                      | Thagard<br>Harnish<br>Pylyshyn<br>Marr                                                                                                                         | <ul> <li>Cognitive science is<br/>unique in that it binds<br/>together different<br/>perspectives and<br/>methodologies in the<br/>study of mind</li> </ul>  |
| $\vdash \Box \triangleleft$ | Philosophical<br>Approach        | The search for<br>wisdom and<br>knowledge; frames<br>broad questions<br>about mind                 | <ul> <li>The mind-body problem</li> <li>Functionalism</li> <li>Knowledge</li> <li>acquisition</li> <li>Consciousness</li> </ul>                                                                       | <ul> <li>Monism</li> <li>Dualism</li> <li>Nature-nurture<br/>debate</li> <li>Reductionism</li> <li>Emergence</li> </ul>                                                                                                       | • Deductive<br>and inductive<br>reasoning                                           | Aristotle<br>Plato<br>Berkeley<br>Democritus<br>Descartes<br>Ryle<br>Clark<br>Hume<br>Locke<br>Chalmers<br>Nagel<br>Jackson<br>Searle<br>Churchland<br>Dennett | <ul> <li>Provides a broad<br/>perspective; asks<br/>fundamental<br/>questions; not an<br/>empirical approach</li> </ul>                                      |
| ⊢∟∢                         | The<br>Psychological<br>Approach | The scientific<br>study of mind and<br>behavior                                                    | <ul> <li>The scientific method</li> <li>Voluntarism</li> <li>Structuralism</li> <li>Gestalt</li> <li>psychology</li> <li>Psychology</li> <li>Behaviorism</li> </ul>                                   | <ul> <li>Theory and<br/>hypothesis</li> <li>Independent<br/>and dependent<br/>variables</li> <li>Experimental<br/>and control<br/>groups</li> <li>Stream of<br/>consciousness</li> <li>Levels of<br/>consciousness</li> </ul> | <ul> <li>Scientific method</li> <li>Introspection</li> <li>Phenomenology</li> </ul> | Wundt<br>Titchener<br>James<br>Wertheimer<br>Kohler<br>Kohler<br>Freud<br>Watson<br>Pavlov<br>Skinner                                                          | <ul> <li>Multiple theoretical positions; first systematic and scientific study of mental phenomena; problems with introspection and phenomenology</li> </ul> |

(Continued)

|             | Evaluation                 | <ul> <li>Fruitful synergistic<br/>use of experimentation<br/>and model building</li> </ul>                                                                     | <ul> <li>Common set of<br/>assumptions<br/>underlying information<br/>processing and<br/>modularity; concepts<br/>of representation and<br/>computation need to<br/>be reconciled with<br/>connectionism</li> </ul>                | <ul> <li>The marriage<br/>of cognitive and<br/>neuroscience<br/>perspectives<br/>in cognitive<br/>neuroscience is a good<br/>neuroscience approach;<br/>specification of<br/>biological structures<br/>and processes of<br/>cognitive abilities</li> </ul> |
|-------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Major Figures              | Neisser<br>Fodor<br>Selfridge<br>Norman<br>Marr<br>Treisman<br>Deutch<br>Posner<br>Snyder<br>Kahneman<br>Biederman                                             | Sperling<br>Baddeley<br>Atkinson<br>Shiffrin<br>Anderson<br>Kosslyn<br>Block<br>Newell<br>Sternberg                                                                                                                                | Sperry<br>Sacks<br>Humphreys<br>Posner<br>Lashley<br>Hebb<br>Shallice<br>Engel<br>Singer                                                                                                                                                                   |
|             | Methodologies              | Experimentation     Modeling                                                                                                                                   | <ul> <li>Experimentation</li> <li>Modeling</li> <li>Same as</li> <li>Cognitive</li> <li>Approach I</li> <li>chapter</li> </ul>                                                                                                     | Case studies<br>Lesion studies<br>Cell-recording<br>techniques<br>EEG, ERP, CAT,<br>PET, and †MRI<br>MEG and TMS                                                                                                                                           |
|             | Secondary Topic/<br>Issues | Template<br>matching<br>Feature<br>detection<br>vision<br>reature<br>integration<br>theory<br>Models of<br>attention                                           | Memory types:<br>sensory,<br>working, and<br>long term<br>The modal, and<br>working memory<br>models<br>The Kosslyn-<br>Schwartz theory<br>of visual imagery<br>Heuristics<br>Means-ends<br>analysis<br>The GPS and<br>SOAR models | The split brain<br>Dorsal and<br>ventral pathways<br>Agnosias<br>Plasticity<br>Hippocampal<br>function<br>Action schemas<br>and scripts<br>Metacognition<br>Binding and<br>neural synchrony                                                                |
|             | Primary Topic/<br>Issues   | <ul> <li>Information-<br/>processing<br/>perspective<br/>Modularity</li> <li>Pattern<br/>recognition</li> <li>Attention</li> </ul>                             | <ul> <li>Memory</li> <li>Models of memory</li> <li>Visual imagery</li> <li>Problem solving</li> </ul>                                                                                                                              | <ul> <li>Neuroscience<br/>methodology</li> <li>Neuron anatomy<br/>and physiology</li> <li>Brain anatomy</li> <li>Neuroscience<br/>of visual object<br/>recognition,<br/>attention,<br/>memory, executive<br/>function, and<br/>problem solving</li> </ul>  |
|             | Chapter<br>Summary         | The information-<br>processing view<br>of mind; use of<br>a computer as<br>a metaphor for<br>mind; use of<br>process models<br>and assumption of<br>modularity | The information-<br>processing view<br>of mind; use of<br>a computer as<br>a metaphor for<br>mind; use of<br>process models<br>and assumption of<br>modularity<br>(Same as Cognitive<br>Approach I chapter)                        | The study of<br>nervous system<br>anatomy and<br>physiology that<br>underlies and gives<br>rise to cognitive<br>function                                                                                                                                   |
| (p          | Name/Title                 | Approach I                                                                                                                                                     | Approach II<br>Approach II                                                                                                                                                                                                         | The<br>Neuroscience<br>Approach                                                                                                                                                                                                                            |
| (Continued) | Chapter<br>No.             | 4                                                                                                                                                              | cu                                                                                                                                                                                                                                 | ۵                                                                                                                                                                                                                                                          |

| Evaluation                 | <ul> <li>Significant advantages<br/>to using networks<br/>for understanding<br/>learning and<br/>knowledge<br/>representation;<br/>challenges in building<br/>networks that rival the<br/>brain</li> </ul>                                       | <ul> <li>Powerful theoretical<br/>framework, but not<br/>all mental processes<br/>may be adaptive;<br/>good integration with<br/>neuroscience; domain-<br/>specific processing<br/>view clashes with<br/>general-purpose<br/>processor view</li> </ul> | (Continued) |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Major Figures              | <ul> <li>McCulloch</li> <li>Pitts</li> <li>Hopfield</li> <li>Kohonen</li> <li>Kohonen</li> <li>Grossberg</li> <li>Gollins</li> <li>Quillian</li> <li>Rumelhart</li> <li>McClelland</li> <li>Watts</li> <li>Strogatz</li> <li>Buchanan</li> </ul> | <ul> <li>Darwin</li> <li>Buss</li> <li>Cosmides</li> <li>Tooby</li> <li>Edelman</li> </ul>                                                                                                                                                             |             |
| Methodologies              | <ul> <li>Software<br/>simulations of<br/>artificial neural<br/>networks</li> <li>Comparison of<br/>results with theory<br/>and empirical data</li> </ul>                                                                                         | <ul> <li>Experimentation</li> <li>Cross-species</li> <li>comparison</li> </ul>                                                                                                                                                                         |             |
| Secondary Topic/<br>Issues | Perceptrons<br>Back<br>propagation<br>Stability and<br>plasticity<br>Catastrophic<br>interference<br>Spreading<br>activation<br>Retrieval cues<br>Priming<br>Propositional<br>networks<br>Small-world<br>networks                                | <ul> <li>General-purpose<br/>versus domain-<br/>specific view of<br/>mind</li> <li>Wason selection<br/>task</li> <li>Heuristics and<br/>fallacies</li> <li>Exaptation,<br/>molecular drive,<br/>and spandrels</li> </ul>                               |             |
| Primary Topic/<br>Issues   | <ul> <li>Serial and parallel processing</li> <li>Artificial neural networks</li> <li>Semantic networks</li> <li>Network science</li> </ul>                                                                                                       | <ul> <li>Natural selection</li> <li>Evolved<br/>psychological<br/>mechanisms</li> <li>Comparative<br/>cognition</li> <li>Evolution</li> <li>and cognitive<br/>processes</li> <li>Behavioral</li> <li>economics</li> </ul>                              |             |
| Chapter<br>Summary         | View of mind as<br>an interconnected<br>set of nodes or<br>web; processing<br>consists of the<br>spread of activation<br>through the web                                                                                                         | Mind as the<br>adapted product of<br>selection forces                                                                                                                                                                                                  |             |
| Name/Title                 | Approach                                                                                                                                                                                                                                         | The<br>Evolutionary<br>Approach                                                                                                                                                                                                                        |             |
| Chapter<br>No.             | 7                                                                                                                                                                                                                                                | ω                                                                                                                                                                                                                                                      |             |

| Chapter<br>Summary<br>The<br>multidisciplinary<br>study of language                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Emotions and<br>moods influence<br>all major cognitive<br>processes<br>and should be<br>incorporated into<br>cognitive theories<br>and models of mind |

| Evaluation                 | Automatic versus<br>effortful processing<br>is a common theme;<br>the historical focus<br>on the individual is<br>too narrow, cognitive<br>science must embrace<br>the social environment | <ul> <li>New computational<br/>technologies may<br/>lead to the densities<br/>required to achieve<br/>the requirements<br/>needed to implement<br/>an intelligence that<br/>an intelligence that<br/>is beyond the human<br/>level; a fundamental<br/>dilemma persists:<br/>"Brains must have<br/>programs yet at the<br/>same time must not be<br/>programmed."</li> </ul> |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Major Figures              | <ul> <li>Fiske</li> <li>Ochsner and</li> <li>Uleberman</li> <li>Rizzolatti</li> <li>Siegal and</li> <li>Varley</li> <li>Frith</li> <li>Schacter</li> </ul>                                | <ul> <li>Turing</li> <li>Minsky</li> <li>Kurzweil</li> <li>Craik</li> <li>Hawkins</li> <li>Hawkins</li> <li>Russell</li> <li>Norvig</li> <li>McCarthy</li> <li>Goertzel</li> </ul>                                                                                                                                                                                          |
| Methodologies              | <ul> <li>Brain imaging</li> <li>The ultimatum game</li> <li>Social dilemmas</li> </ul>                                                                                                    | <ul> <li>Cognitive models</li> <li>Turing Test</li> </ul>                                                                                                                                                                                                                                                                                                                   |
| Secondary Topic/<br>Issues | <ul> <li>Anterior and posterior attention systems</li> <li>Autism</li> <li>Prisoner's dilemma</li> </ul>                                                                                  | <ul> <li>Universal</li> <li>computation</li> <li>Chatbots</li> <li>Evolutionary</li> <li>computing</li> </ul>                                                                                                                                                                                                                                                               |
| Primary Topic/<br>Issues   | Mirror neurons<br>Theory of mind<br>Attitudes<br>Cognitive<br>dissonance<br>Impressions<br>Attributions<br>Stereotyping<br>Prejudice                                                      | <ul> <li>Historical<br/>perspective<br/>Influence of Turing<br/>Predictive<br/>architectures<br/>Artificial general<br/>intelligence</li> <li>Agent-based<br/>architectures:<br/>Multiagent<br/>systems</li> </ul>                                                                                                                                                          |
| Chapter<br>Summary         | Thinking about<br>people is different<br>from thinking<br>about objects;<br>social cognitive<br>neuroscience is a<br>good example of the<br>interdisciplinary<br>approach                 | Defining the<br>concept of artificial<br>intelligence;<br>machine<br>representation of<br>cognitive function                                                                                                                                                                                                                                                                |
| Name/Title                 | Approach                                                                                                                                                                                  | The Artificial<br>Intelligence<br>Approach I                                                                                                                                                                                                                                                                                                                                |
| Chapter<br>No.             | 7                                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                           |

|             | Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>In some activities,<br/>machines already<br/>outperform humans; a<br/>great many problems<br/>need to be addressed<br/>in the future:<br/>perception, finely<br/>honed reasoning,<br/>and manjulative<br/>capabilities of adult<br/>humans; the more<br/>we try to replicate<br/>human intelligence,<br/>the more we may learn<br/>to appreciate and<br/>understand humans</li> </ul> | <ul> <li>Benefits of cognitive<br/>science are many and<br/>widespread throughout<br/>engineering, medicine,<br/>education, and other<br/>fields; lack of a single<br/>unified theory</li> </ul>                                                                                  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Major Figures                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>Turing</li> <li>Minsky</li> <li>Brooks</li> <li>Russell</li> <li>Norvig</li> <li>Breazeal</li> <li>Arkin</li> </ul>                                                                                                                                                                                                                                                                   | <ul> <li>Gibson</li> <li>Dreyfus</li> <li>Brooks</li> <li>Barsalou</li> <li>Pulvermüller</li> <li>Borghi</li> <li>Turvey</li> <li>Spivey</li> </ul>                                                                                                                               |
|             | Methodologies                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>Cognitive modeling</li> <li>Simulation</li> </ul>                                                                                                                                                                                                                                                                                                                                     | <ul> <li>Nonlinear<br/>modeling</li> <li>Use of state<br/>space,<br/>trajectories, and<br/>attractors to<br/>describe cognitive<br/>phenomena</li> </ul>                                                                                                                          |
|             | Secondary Topic/<br>Issues                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Hierarchical, reactive, hybrid robotic architectures</li> <li>Emotion in IAs</li> </ul>                                                                                                                                                                                                                                                                                               | <ul> <li>Predictability</li> <li>Randomness</li> <li>Constructivism</li> </ul>                                                                                                                                                                                                    |
|             | Chapter<br>SummaryPrimary Topic/<br>IssuesSummaryIssuesThe intelligent<br>agent (IA)Importance of<br>biologyThe intelligent<br>agent (IA)Importance of<br>biologyThe intelligent<br>agent (IA)Importance of<br>biologyThe intelligent<br>agent (IA)Importance of<br>biologyThe intelligent<br>agent (IA)Embodiment<br>and situational<br>aspects of IA<br>(structure)of IAs; robotic<br>biological and<br>biological and<br>biological and<br>biological and<br>architectures |                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>Cognitive</li> <li>science needs to<br/>do a better job<br/>explaining the<br/>role of the body<br/>and of physical<br/>environments<br/>in cognition, as<br/>well as individual<br/>and cultural<br/>differences</li> <li>The dynamical<br/>systems approach</li> </ul> |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                | An evaluation of<br>the embodiment<br>approach to<br>cognitive science<br>and the ecological<br>perception<br>framework                                                                                                                                                           |
| (p          | Name/Title                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The Artificial<br>Intelligence<br>Approach II                                                                                                                                                                                                                                                                                                                                                  | The<br>Ecological<br>Approach                                                                                                                                                                                                                                                     |
| (Continued) | Chapter<br>No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>α</del>                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                 |

xxvi

#### ABOUT THE AUTHORS

Jay Friedenberg is Professor of the Psychology Department at Manhattan College, where he directs the Cognitive Science Program. He is interested in both vision and the philosophy of mind. He teaches courses in physiological psychology, cognition and learning, sensation and perception, and artificial intelligence and robotics. He has published several articles on visual estimation of center of mass. His current research projects focus on the aesthetics of geometrical shapes. He has published books on artificial intelligence, dynamical systems theory, and psychology. He is a member of the International Association of Empirical Aesthetics, the Eastern Psychological Association, the Vision Science Society, the Psychonomic Society, and Phi Beta Kappa. He obtained his PhD in cognitive psychology in 1995 at the University of Virginia.

**Gordon Silverman** is Professor Emeritus of Electrical and Computer Engineering at Manhattan College. His professional career spans more than 55 years of corporate, teaching, consulting, and research experience, during which he has developed a range of scientific instruments, particularly for use in physiological psychology research environments. He is the holder of eight patents, some related to behavior modification. The author of more than 20 journal articles and books, he has also served on the faculties of The Rockefeller University and Fairleigh Dickinson University. His current research interests include telemedicine, rehabilitation medicine, artificial intelligence, and biomedical instrumentation and modeling. He holds engineering degrees from Columbia University and received a PhD in system science from New York University Polytechnic School of Engineering in 1972.

**Michael J. Spivey** is Professor of Cognitive Science at the University of California, Merced. He earned his BA in Psychology at the University of California, Santa Cruz, and his PhD in Brain and Cognitive Sciences at the University of Rochester. After 12 years as a psychology professor at Cornell University, Spivey moved to UC Merced to help build their Department of Cognitive and Information Sciences. He has published over 100 journal articles and book chapters on the embodiment of cognition and interactions between language, vision, memory, syntax, semantics, and motor movement. His research uses eye tracking, computer-mouse tracking, and dynamical systems theory to explore how brain, body, and environment work together to make a mind what it is. In 2010, Spivey received the William Procter Prize for Scientific Achievement from the Sigma Xi Scientific Research Honor Society.



#### INTRODUCTION Exploring Mental Space

#### A BRAVE NEW WORLD

We are in the midst of a scientific revolution. For centuries, science has made great strides in our understanding of the external observable world. Physics revealed the motion of the planets, chemistry discovered the fundamental elements of matter, and biology has told us how to understand and treat disease. But during much of this time, there were still many unanswered questions about something perhaps even more important to us—the human mind.

What makes mind so difficult to study is that, unlike the phenomena described above, it is not something we can easily observe, measure, or manipulate. In addition, the mind is the most complex entity in the known universe. To give you a sense of this complexity, consider the following. The human brain is estimated to contain 10 billion to 100 billion individual nerve cells or neurons. Each of these neurons can have as many as 10,000 connections to other neurons. This vast web of neural tissue is the core engine of the mind and helps generate a wide range of amazing and difficult-to-understand mental phenomena, such as perception, memory, language, emotion, and social interaction.

The past several decades have seen the introduction of new technologies and methodologies for studying this intriguing organ, and its relationship to the body, and to the environment. We have learned more about the mind in the past half-century than in all the time that came before that. This period of rapid discovery has coincided with an increase in the number of different disciplines—many of them entirely new—that study mind. Since then, a coordinated effort among the practitioners of these disciplines has come to pass. This diversely interdisciplinary approach has since become known as cognitive science. Unlike the sciences that came before, which were focused solely on the world of physical events in physical space, this new endeavor now turns its full attention to discovering the fascinating mental events that take place in mental space.

#### Learning Objectives

After reading this chapter, you will be able to:

 List at least five disciplines that participate in the field of cognitive science.

2. Describe what a mental representation is.

3. Describe what mental computation is.

4. Define what interdisciplinary means.